Showing posts with label Physics Stack Exchange. Show all posts
Showing posts with label Physics Stack Exchange. Show all posts

Representations of the Lorentz group are not unitary and the normal ordered angular momentum

I've mentioned earlier (here, in Spanish anyway) that I'm trying to introduce myself to QFT following this set of lecture notes by David Tong. I recently deleted my Physics SE account, but I happened to note that the mentioned set of lecture notes have become somewhat popular (in a good way), so hopefully someone else than me will find this useful.

First (I'll actually go backwards), in Section 4.1.1 it's stated that, in general, the representation of the Lorentz group $S[\Lambda]$ is not unitary, being that by the definition
\begin{equation}S[\Lambda]=\exp\left(\frac{1}{2}\Omega_{\rho\sigma}S^{\rho\sigma}\right)\label{qftlor1}\end{equation} this representation would be unitary if $(S^{\mu\nu})^\dagger=-S^{\mu\nu}$, which is then shown that doesn't hold. Here, basically, $S^{\mu\nu}$ are the basis generators of Lorentz transformations in spinor representation, $\Omega_{\rho\sigma}$ are the elements of an antisymmetric $4\times4$ matrix that specify the Lorentz transformation (a boost by how much speed, a rotation by what angle, etc) and thus $S[\Lambda]$ is the full Lorentz transformation in spinor rep.

I actually ran into trouble trying to prove that $S[\Lambda]$ is unitary if $S^{\mu\nu}$ are anti-hermitian. The thing was that the notation turned really confusing for me. However, it's stressed out that in (\ref{qftlor1}), the thing making $S[\Lambda]$ a matrix is actually $S^{\mu\nu}$, because these are actually $4\times4$ matrices. For it to be clear, if we were to write the components of $S[\Lambda]$, we'd write something as
\begin{equation}S[\Lambda]^{\alpha\beta}=\exp\left[\frac{1}{2}\Omega_{\rho\sigma}S^{\rho\sigma\alpha\beta}\right]\end{equation} This being said, it's actually pretty easy to make the calculation. By definition, $S[\Lambda]$ is unitary if
\begin{equation}S^\dagger[\Lambda]S[\Lambda]=1\label{qftlor2}\end{equation} To compute $S^\dagger[\Lambda]$ we need to simplify something of the form $\left(e^M\right)^\dagger$ with $M$ a $4\times4$ matrix. Of course
\begin{align}\exp(M)^\dagger&=\left(\sum_{k=0}^\infty\frac{M^k}{k!}\right)^\dagger\nonumber\\
&=\sum_{k=0}^\infty\frac{1}{k!}\left(M^k\right)^\dagger\nonumber\\
&=\sum_{k=0}^\infty\frac{1}{k!}\left(M^\dagger\right)^k=\exp\left(M^\dagger\right)\end{align} which seems pretty obvious, but when you don't remember these things by heart (and you shouldn't), it's far better to be sure. This way, the requirement (\ref{qftlor2}) translates into
\begin{equation}\exp\left[\frac{1}{2}\left(\Omega_{\rho\sigma}S^{\rho\sigma}\right)^\dagger+\frac{1}{2}\Omega_{\rho\sigma}S^{\rho\sigma}\right]=1\end{equation} Now, as said before, the matrix is $S^{\mu\nu}$ while $\Omega_{\mu\nu}$ are real numbers, so the expected result follows
\begin{equation}\exp\left[\frac{1}{2}\Omega_{\rho\sigma}\left(\left(S^{\rho\sigma}\right)^\dagger+S^{\rho\sigma}\right)\right]=1\,\Longrightarrow\,\left(S^{\rho\sigma}\right)^\dagger=-S^{\rho\sigma}\end{equation} So, at the end, the calculation was indeed kind of naive. All this beginning of section 4 is probably the part of the lecture notes that has gotten the most of me, mainly because I've got no formal knowledge of Representation Theory nor Lie groups or anything like that, so despite that I find myself flashy with all the new lexicon, I admit I have a long road ahead. A related discussion about non-unitary representations can be found here.

Abstruse Goose - Moment of Clarity
Abstruse Goose - Moment of Clarity 2

The other thing I got stuck with while ago was to compute the angular momentum (this is actually twice angular momentum)
\begin{equation}Q_i\equiv-2\epsilon_{ijk}\int{d^3x}\,x^kT^{0j}\label{qftlorFIN}\end{equation} where ${T^\mu}_\nu=\frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}\partial_\nu\phi-{\delta^\mu}_\nu\mathcal{L}$ with the Lagrangian $\mathcal{L}=\frac{1}{2}\partial_\mu\phi\partial^\mu\phi-\frac{1}{2}m^2\phi^2$ on the real scalar field $\phi=\phi(x)$. Basically a Klein-Gordon real scalar. This constitutes problem 7 on Example sheet 2 of the lecture notes by David Tong. I originally posted the question on Physics SE and got no answer before I deleted my profile.

The ultimate issue wasn't really about a mistake, nor about normal ordering. The final expression of $Q_i$ in terms of ladder operators should be
\begin{equation}Q_i=-i\epsilon_{ijk}\int\frac{d^3p}{(2\pi)^3} a^\dagger_\vec{p}\left(p_j\frac{\partial}{\partial{p}^k}-p_k\frac{\partial}{\partial{p}^j}\right) a_\vec{p}\label{qftlorfin}\end{equation} So next I write the whole nasty calculation; if you don't feel like following it all, just skip to eq. (\ref{qftlor5}).

As $T^{0j}=\dot\phi\partial^j\phi$ and
\begin{align}\phi=\int\frac{d^3p}{(2\pi)^3}\frac{1}{\sqrt{2E_\vec{p}}}\left(a_\vec{p} e^{i\vec{p}\cdot\vec{x}}+a^\dagger_\vec{p} e^{-i\vec{p}\cdot\vec{x}}\right)\label{qftlor3}\\\dot\phi=-i\int\frac{d^3p}{(2\pi)^3}\sqrt{\frac{E_\vec{p}}{2}}\left(a_\vec{p} e^{i\vec{p}\cdot\vec{x}}-a^\dagger_\vec{p} e^{-i\vec{p}\cdot\vec{x}}\right)\label{qftlor4}\\\partial^j\phi=-i\int\frac{d^3p}{(2\pi)^3}\frac{p^j}{\sqrt{2E_\vec{p}}}\left(a_\vec{p} e^{i\vec{p}\cdot\vec{x}}-a^\dagger_\vec{p} e^{-i\vec{p}\cdot\vec{x}}\right)\end{align} then
\begin{align}&Q_i=-2\epsilon_{ijk}\int{d^3x}\,x^k\dot\phi_p(x)\partial^j\phi_q(x)\nonumber\\ &=\epsilon_{ijk}\sqrt{\frac{E_\vec{p}}{E_\vec{q}}}\int\frac{d^3pd^3qd^3x}{(2\pi)^6}x^kq^j\left(a_\vec{p}e^{i\vec{p}\cdot\vec{x}}-a^\dagger_\vec{p}e^{-i\vec{p}\cdot\vec{x}}\right)\left(a_\vec{q}e^{i\vec{q}\cdot\vec{x}}-a^\dagger_\vec{q}e^{-i\vec{q}\cdot\vec{x}}\right)\nonumber\\ &=\cdots\left(a_\vec{p}a_\vec{q}e^{i(\vec{p}+\vec{q})\cdot\vec{x}}+a_\vec{p}^{\dagger}a_\vec{q}^{\dagger}e^{-i(\vec{p}+\vec{q})\cdot\vec{x}}-a_\vec{p}a^\dagger_\vec{q}e^{i(\vec{p}-\vec{q})\cdot\vec{x}}-a^\dagger_\vec{p}a_\vec{q}e^{-i(\vec{p}-\vec{q})\cdot\vec{x}}\right)\end{align} Now,
\begin{align}\int{d^3x}\,x^ke^{i(\vec{p}\pm\vec{q})\cdot\vec{x}}=\mp{i}\frac{\partial}{\partial{p}^k}\int{d^3x}\,e^{i(\vec{p}\pm\vec{q})\cdot\vec{x}}=\mp{i}\,(2\pi)^3\frac{\partial}{\partial{p}^k}\delta(\vec{p}\pm\vec{q})\end{align} and so
\begin{align}Q_i=-i\epsilon_{ijk}&\sqrt{\frac{E_\vec{p}}{E_\vec{q}}}\int\frac{d^3pd^3q}{(2\pi)^3}q^j\left[(a_\vec{p}a_\vec{q}-a^\dagger_\vec{p}a^\dagger_\vec{q})\frac{\partial}{\partial{q}^k}\delta(\vec{p}+\vec{q})+(a_\vec{p}a^\dagger_\vec{q}-a^\dagger_\vec{p}a_\vec{q})\frac{\partial}{\partial{q}^k}\delta(\vec{p}-\vec{q})\right]\end{align} Now, integrating by parts on $q$, for example, for the first term
\begin{align}\epsilon_{ijk}a_\vec{p}\int{d^3q}\,q^ja_\vec{q}\frac{\partial}{\partial{q}^k}\delta(\vec{p}+\vec{q})&=-\epsilon_{ijk}a_\vec{p}\int{d^3q}\,q^j\left[\frac{\partial}{\partial{q}^k}a_\vec{q}\right]\delta(\vec{p}+\vec{q})\nonumber\\ &=\epsilon_{ijk}a_\vec{p}p^j\frac{\partial}{\partial(-p)^k}a_{-\vec{p}}\end{align} Then, integrating each term in $q$,
\begin{align}Q_i=-i\epsilon_{ijk}&\int\frac{d^3p}{(2\pi)^3}p^j\left[a_\vec{p}\frac{\partial}{\partial(-p)^k}a_{-\vec{p}}-a^\dagger_\vec{p}\frac{\partial}{\partial(-p)^k}a^\dagger_{-\vec{p}}-a_\vec{p}\frac{\partial}{\partial{p}^k}a^\dagger_\vec{p}+a^\dagger_\vec{p}\frac{\partial}{\partial{p}^k}a_\vec{p}\right]\end{align} The first two terms vanish upon integration because they are odd in $p$, leaving
\begin{equation}Q_i=-i\epsilon_{ijk}\int\frac{d^3p}{(2\pi)^3}p^j\left[a^\dagger_\vec{p}\frac{\partial}{\partial{p}^k}a_\vec{p}-a_\vec{p}\frac{\partial}{\partial{p}^k}a^\dagger_\vec{p}\right]\label{qftlor5}\end{equation} So, finally comes normal ordering.

I was skeptical at first but the calculation goes well step-by-step and the pieces seem to fit together well. The normal ordering is
\begin{align}:a^\dagger_\vec{p}(\partial_ka_\vec{p})-a_\vec{p}(\partial_ka^\dagger_\vec{p}):&=a^\dagger_\vec{p}(\partial_ka_\vec{p})-:a_\vec{p}(\partial_ka^\dagger_\vec{p}):\nonumber\\ &=a^\dagger_\vec{p}(\partial_ka_\vec{p})-(\partial_ka^\dagger_\vec{p})a_\vec{p}\nonumber\\ &=2a^\dagger_\vec{p}(\partial_ka_\vec{p})-\partial_k(a^\dagger_\vec{p}a_\vec{p})\label{qftlorf2}\end{align} (where of course I'm using $\partial_k=\frac{\partial}{\partial{p}^k}$) which yields the correct answer if $\partial_k(a^\dagger_\vec{p}a_\vec{p})=0$. I also noticed that $\partial_k(a^\dagger_\vec{p}a_\vec{p})=\partial_k(a_\vec{p}a^\dagger_\vec{p})$ since
\begin{equation}[a_\vec{p},a^\dagger_\vec{p}]=(2\pi)^3\delta(0)\label{qftL1}\end{equation}
After that long, burdensome and nasty calculation, I was unable to show that indeed $\partial_k(a^\dagger_\vec{p}a_\vec{p})=0$. I recently managed to do so and it goes as follows.

Knowing that $\partial_k(a^\dagger_\vec{p}a_\vec{p})=a_\vec{p}^\dagger(\partial_ka_\vec{p})+(\partial_ka^\dagger_\vec{p})a_\vec{p}$, one can proceed by inverting the Fourier transforms (\ref{qftlor3}) and (\ref{qftlor4}), getting a sum and a substraction of $a_\vec{p}$ and $a_\vec{p}^\dagger$, which can be combined to yield
\begin{align}a_\vec{p}&=\int{d^3x}\,f(x)\,e^{-i\vec{p}\cdot\vec{x}}\label{qftlorf8}\\
a_\vec{p}^\dagger&=\int{d^3y}\,g(y)\,e^{i\vec{p}\cdot\vec{y}}\label{qftlorf9}\end{align} with $f=\alpha\phi+\beta\dot\phi$ and $g=\alpha\phi-\beta\dot\phi$ (keep in mind that these are the operators), and thus,
\begin{align}a_\vec{p}^\dagger(\p_ka_\vec{p})&=-i\int{d^3x\,d^3y}\,x^kg(y)f(x)e^{-i\vec{p}\cdot(\vec{x}-\vec{y})}\\
(\p_ka_\vec{p}^\dagger)a_\vec{p}&=i\int{d^3x\,d^3y}\,y^kg(y)f(x)e^{-i\vec{p}\cdot(\vec{x}-\vec{y})}\end{align} so that, being $x$, $y$ integration variables, indeed,
\begin{equation}\partial_k(a^\dagger_\vec{p}a_\vec{p})=a_\vec{p}^\dagger(\partial_ka_\vec{p})+(\partial_ka^\dagger_\vec{p})a_\vec{p}=0\end{equation} Also, however, knowing the final result from the start, one could have expect from (\ref{qftlor5}), and then show in a similar fashion, that $a_\vec{p}^\dagger(\partial_ka_\vec{p})=-a_\vec{p}(\partial_ka^\dagger_\vec{p})+\delta(0)$, just to finally do the normal ordering and remove the $\delta(0)$ infinity, which arises from $[f(x),g(y)]\propto\delta(x-y)$. It all just falls into place, so normal ordering does not seem to have been the problem either: I guess I was just being plain lazy because I didn't expected to need (\ref{qftlorf8}) and (\ref{qftlorf9}).

So finally, (\ref{qftlor5}) turns into
\begin{equation}Q_i=-2i\epsilon_{ijk}\int\frac{d^3p}{(2\pi)^3}\,a^\dagger_\vec{p}\left(p^j\frac{\partial}{\partial{p}^k}\right)a_\vec{p}\end{equation} which is equivalent to (\ref{qftlorFIN}); however, this is the antisymmetric $\epsilon_{ijk}$ times something symmetric, so the whole thing is antisymmetric and can be written as $-\epsilon_{ijk}\int{d^3x}\left(x^kT^{0j}-x^jT^{0k}\right)$. This way the result written as (\ref{qftlorfin}) follows. As said before, this is actually twice the actual angular momentum operator, so I'll just drop the $2$ factor.

So let's try the new toy: being $|\vec{p}\rangle=a_\vec{p}^\dagger|0\rangle$ the one-particle state with momentum $\vec{p}$, using the relation (\ref{qftL1}) and integrating by parts, we find
\begin{align}Q_i|\vec{p}\rangle&=-i\epsilon_{ijk}\int\frac{d^3q}{(2\pi)^3}\,a^\dagger_\vec{q}\left(q^j\frac{\partial}{\partial{q}^k}\right)a_\vec{q}a_\vec{p}^\dagger|0\rangle\nonumber\\
&=-i\epsilon_{ijk}\int\frac{d^3q}{(2\pi)^3}\,a^\dagger_\vec{q}\left(q^j\frac{\partial}{\partial{q}^k}\right)\delta(\vec{p}-\vec{q})|0\rangle\nonumber\\
&=i\epsilon_{ijk}\int{d^3q}\,q^j\delta(\vec{p}-\vec{q})\frac{\partial}{\partial{q}^k}a_\vec{q}^\dagger|0\rangle\nonumber\\
&=i\epsilon_{ijk}p^j\frac{\partial}{\partial{p}^k}|\vec{p}\rangle\end{align} And one can readily see with (\ref{qftlorf9}) that a one particle state with no momentum, $|\vec{p}=\vec{0}\rangle=a_\vec{0}^\dagger|0\rangle$ carries no internal angular momentum or spin, $Q_i|0\rangle=0$, as expected.

Finally, the previous Abstruse Goose cartoon, and the next one, reminded me of this old slogan that a lot of people I've come across preaches:
Sure, I know you can do the math, but do you really understand it?

In physics there's always this thing about understanding results physically, and that's fine, but a lot of people seem to read this as ultimately reduce all mathematical results to apples and oranges. A discussion about the first cartoon can be found here, and as can be seen, there's no problem whatsoever for people to understand things physically without reducing them to potatoes (which, when done, happens at a price, as science communicators know). To develop an intuition about physical phenomena is, however, a different matter, but then again, one that's mainly driven mathematically.
Our experience up to date justifies us in feeling sure that in Nature is actualized the ideal of mathematical simplicity. It is my conviction that pure mathematical construction enables us to discover the concepts and the laws connecting them which give us the key to the understanding of the phenomena of Nature. Experience can of course guide us in our choice of serviceable mathematical concepts; it cannot possibly be the source from which they are derived; experience of course remains the sole criterion of the serviceability of a mathematical construction for physics, but the truly creative principle resides in mathematics. In a certain sense, therefore, I hold it to be true that pure thought is competent to comprehend the real, as the ancients dreamed.

—A. Einstein, “On the Method of Theoretical Physics

Of course there is still a great deal to learn for us all, and wandering moments remain essential to accomplish that ;-)

Abstruse Goose - Moment of Clarity
Abstruse Goose - Moment of Clarity 1

Variaciones bajo transformaciones de Lorentz infinitesimales

He estado procurando introducirme por mi cuenta a QFT con estas notas de David Tong y he empezado por la teoría clásica. Como ilustra Abstruse Goose, el camino a la frontera de la física (no necesariamente cuerdas, como lo ilustra en una de las caricaturas) es un poco largo ;-)

En fin, me encontré con una cuestión interesante y que puede valer la pena discutir. El teorema de Noether puede leerse como
toda simetría continua del Lagrangiano $\mc{L}$ da cuenta a una corriente conservada
siempre que se relaciona con la acción por $S=\int{d}^4x\mc{L}$ y aquí consideraré un Lagrangiano $\mc{L}=\mc{L}(\phi,\p_\mu\phi)$ con el campo $\phi$ dependiente de las variables espaciotemporales $x$. En general se dice que una transformación infinitesimal $\phi\to\phi+\delta\phi$ es una simetría si la variación del Lagrangiano es una derivada total, i.e. si $\delta\mc{L}=\p_\mu{f}^\mu$ para algún $f=f(\phi)$.

Lo que me interesa aquí es el caso particular de transformaciones de Lorentz infinitesimales, que tienen la forma
\begin{equation}{\Lambda^\mu}_\nu={\delta^\mu}_\nu+{\omega^\mu}_\nu\end{equation} con ${\omega^\mu}_\nu$ infinitesimal y antisimétrico (puedes probarlo a partir de la definición misma de ${\Lambda^\mu}_\nu$, i.e. $\eta_{\mu\nu}={\Lambda^\alpha}_\mu{\Lambda^\beta}_\nu\eta_{\alpha\beta}$). En general una transformación de Lorentz para un escalar es $\phi(\Lambda)\to\phi(\Lambda^{-1}x)$; de la definición misma de la inversa, se puede ver que ${(\Lambda^{-1})^\mu}_\nu={\delta^\mu}_\nu-{\omega^\mu}_\nu$, entonces a primer orden en $\omega$,
\begin{align}\phi(x)&\to\phi(x^\mu-{\omega^\mu}_\nu{x}^\nu)\nonumber\\&\simeq\phi(x)-{\omega^\mu}_\nu{x}^\nu\p_\mu\phi(x)\end{align} i.e.
\begin{equation}\delta\phi=-{\omega^\mu}_\nu{x}^\nu\p_\mu\phi\label{eq1}\end{equation}
El problema que me encontré (primero) fue con la variación de $\mc{L}$; precisamente por el resultado (\ref{eq1}), debería tenerse
\begin{equation}\delta\mc{L}=-{\omega^\mu}_\nu{x}^\nu\p_\mu\mc{L}\end{equation} que es exactamente lo mismo que $\delta\mc{L}=\p_\mu(-{\omega^\mu}_\nu{x}^\nu\mc{L})$, ya que ${\omega^\mu}_\nu\p_\mu{x}^\nu={\omega^\mu}_\nu{\delta^\nu}_\mu=0$ por la antisimetría de $\omega$. De cualquier modo si uno calcula directamente $\delta\mc{L}=\frac{\p\mc{L}}{\p\phi}\delta\phi+\frac{\p\mc{L}}{\p(\p_\mu\phi)}\delta(\p_\mu\phi)$, se obtiene que
\begin{equation}\delta\mathcal{L}=-\partial_\mu({\omega^\mu}_\nu{x}^\nu\mathcal{L})-\frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}{\omega^\sigma}_\mu\partial_\sigma\phi\label{2}\end{equation} donde la forma más sencilla de calcular $\delta(\p_\mu\phi)$ conociendo $\delta\phi$ es usar $\delta(\p_\mu\phi)=\p_\mu(\delta\phi)$ (que desconozco rigurosamente por qué es cierta, pero supongo que básicamente es porque el campo está en $\mathbb{R}^{1,3}$ y todo es lindo y continuo), de donde surge el término extra,
\begin{equation}\partial_\mu(\delta\phi)=-{\omega^\sigma}_\nu\left[{\delta^\nu}_\mu\partial_\sigma\phi+x^\nu\partial_{\mu\sigma}\phi\right]=-{\omega^\sigma}_\mu\partial_{\sigma}\phi-{\omega^\sigma}_\nu{x}^\nu\partial_{\mu\sigma}\phi\label{3}\end{equation} de cualquier modo uno puede emplear la regla de transformación de las derivadas del campo (básicamente la de una 1-forma o covector), $\partial_\mu\phi(x)\to{(\Lambda^{-1})^\nu}_\mu\partial_\nu\phi(\Lambda^{-1}x)$, y se obtiene
\begin{align}{(\Lambda^{-1})^\nu}_\mu\partial_\nu\phi(\Lambda^{-1}x)&=({\delta^\nu}_\mu-{\omega^\nu}_\mu)\partial_\nu\phi(x^\sigma-{\omega^\sigma}_\rho{x}^\rho)\nonumber\\&\simeq({\delta^\nu}_\mu-{\omega^\nu}_\mu)\left[\partial_\nu\phi(x)-{\omega^\sigma}_\rho{x}^\rho\partial_{\sigma\nu}\phi(x)\right]\nonumber\\&=\partial_\mu\phi-{\omega^\sigma}_\rho{x}^\rho\partial_{\sigma\mu}\phi-{\omega^\nu}_\mu\partial_\nu\phi\end{align} y en efecto $\delta(\p_\mu\phi)$ coincide con (\ref{3}).

Hice esta pregunta en Physics SE y la respuesta es de hecho sencilla: en (\ref{2}) se tiene que
\begin{equation}\frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}{\omega^\sigma}_\mu\partial_\sigma\phi=0\end{equation} dado que $\frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}\propto\p^\mu\phi$ pues $\mc{L}=\mc{L}(\phi,\p_\mu\phi)$ únicamente y la expresión se reduce a una contracción de un tensor antisimétrico $\omega^{\mu\nu}$ con uno simétrico $\p_\mu\phi\p_\nu\phi$.

El desconcierto tal vez me surge de que esperaba tener $\p_\mu\phi\to\p_\mu\phi-{\omega^\sigma}_\rho{x}^\rho\partial_{\sigma\mu}\phi$, como se señala en estas soluciones (sol 6) elaboradas por Peng Zhao (autor al que ya había encontrado antes estudiando AdS-Schwarzschild); el meollo tal vez es que simplemente lo escribe así y no lo calcula directamente; de cualquier modo, como se vio, el término extra al final no es relevante.

Considando luego el caso del Lagrangiano de campo electromagnético $\mc{L}=\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ (en vacío/sin carga) con $F_{\mu\nu}=\p_\mu{A}_\nu-\p_\nu{A}_\mu$, invariante ante transformaciones de norma $A_\mu\to{A}_\mu+\p_\mu\zeta$ con $\zeta=\zeta(x)$ suficientemente continua, nuevamente surge algo parecido. Al tomar traslaciones infinitesimales $x^\mu\to{x}^\mu+\epsilon^\mu$, puede considerarse una matriz ${{\tilde\Lambda}^\mu}_\nu={\delta^\mu}_\nu+\epsilon^\mu\p_\nu$ en el grupo de Poincaré, de modo que el potencial $A$ transforma como $A^\mu(x)\to{\tilde{\Lambda}^\mu}_\nu{A}^\nu(x)(\tilde{\Lambda}^{-1}x)$, i.e. a primer orden en $\epsilon$,
\begin{align}A^\mu&\to({\delta^\mu}_\nu+\epsilon^\mu\p_\nu)A^\nu(x^\sigma-\epsilon^\sigma)\nonumber\\&\simeq({\delta^\mu}_\nu+\epsilon^\mu\p_\nu)[A^\nu(x)-\epsilon^\sigma\p_\sigma{A}^\nu(x)]\nonumber\\&=A^\mu-\epsilon^\sigma\p_\sigma{A}^\mu+\epsilon^\mu\p_\nu{A}^\nu\end{align} y nuevamente sobra un término, $\epsilon^\mu\p_\nu{A}^\nu$, respecto a lo que escribe Zhao (sol 7, simplemente $A^\mu\to{A}^\mu-\epsilon^\sigma\p_\sigma{A}^\mu$). En este caso es evidente que este término no es relevante pues es una derivada total y se sabe de antemano que $\mc{L}$ es invariante ante transformaciones de norma. Si nuevamente se calcula a pie la variación $\delta\mc{L}$, el resultado debe ser simplemente $\delta\mc{L}=\p_\mu(-\epsilon^\mu\mc{L})$, sabiendo que un escalar transforma como $\phi(x)\to\phi(\tilde{\Lambda}^{-1}x)=\phi(x)-\epsilon^\nu\p_\nu\phi$ bajo esta traslación; esto evidentemente ocurre, ya que $\mc{L}$ sólo depende de $\p_\mu{A}^\nu$ y al calcular $\p_\mu(\delta{A}^\nu)$, el término extra desaparece.

Podría haber quedado satisfecho con esto, de cualquier modo mi terquedad exigía al menos otra prueba de que este término extra es inofensivo, e.g. al calcular la corriente conservada. Como puede leerse en las notas de Tong, por teorema de Noether, la corriente conservada $j^\mu$ debida a una transformación de simetría $\phi\to\phi+\delta\phi$ está dada por
\begin{equation}j^\mu=\frac{\p\mc{L}}{\p(\p_\mu\phi)}\delta\phi-f^\mu(\phi)\end{equation} En este caso en lugar del escalar $\phi$ se tiene el potencial vectorial $A^\mu$ y $f^\mu=-\epsilon^\mu\mc{L}$. Así, puede calcularse que la corriente conservada es
\begin{equation}j^\mu=-\epsilon^\sigma{T^\mu}_\sigma+\epsilon^\nu\p_\sigma{A}^\sigma\frac{\p\mc{L}}{\p(\p_\mu{A}^\nu)}\end{equation} donde
\begin{equation}{T^\mu}_\sigma=\frac{\p\mc{L}}{\p(\p_\mu{A}^\nu)}\p_\sigma{A}^\nu-{\delta^\mu}_\sigma\mc{L}\end{equation} es el tensor de energía-momento, que por construcción satisface $\p_\mu{T^\mu}_\sigma=0$; escribir $j^\mu$ de esta forma es conveniente porque se sabe que debe satisfacer $\p_\mu{j}^\mu=0$, de modo que
\begin{equation}\epsilon^\nu\p_\sigma{A}^\sigma\p_\mu\left(\frac{\p\mc{L}}{\p(\p_\mu{A}^\nu)}\right)=0\end{equation} lo que por supuesto ocurre, siendo que $\frac{\p\mc{L}}{\p(\p_\mu{A}^\nu)}\propto{F^\mu}_\nu$ y de las ec. de movimiento (Maxwell), $\p_\mu{F}^{\mu\nu}=0$. Esto da indicios de que todo sigue siendo consistente, como se espera; al final lo que tiene que ocurrir es que todo debe ser consistente con el teorema de Noether; diría que por ello es inofensivo desechar el término extra que aparece en la transformación de vectores (o los términos extras que aparecerían si se tratara de tensores de mayor rango) casi como se desechan los órdenes mayores del término infinitesimal.

The development of the first nuclear bombs

I recently formulated a question on Physics Stack Exchange for which I received a rather illustrious answer. I'd like to share it here, though if you are an active researcher, academic or student of physics, you can always join Physics SE and vote up both the question and the answer ;) . There's also another answer and some comments that you may find informative.

So the question was:
I've just read that 68 years ago Little Boy was dropped on Hiroshima, which made me wonder about some rather historical facts about the development of the first nuclear bombs; they seem to be several questions, but they boil down to the same thing: the theoretical aspects of the development of the bombs.

As far as I know, nuclear fission was already understood at the time, so was all the competition between the american team and the german team to develop the bomb first, a mere matter of engineering? Or what was the role of theoretical physicists such as Richard Feynman? Also, I've heard things like that the team led by Werner Heisenberg had misconceptions about nuclear fission, so that his team could not develop the bomb first.

Can anyone put in perspective the theoretical aspects of the development of the bombs taking care of this historical issues?

And the answer, given by Physics SE user Ben Crowell, goes like this:
Only some very, very basic knowledge about the physics of nuclear fission was available at this time. I'll give a few details about this below. Also, according to this 1967 interview with Heisenberg, it's probably not accurate to imagine a competition between the US and the Nazis to build a bomb; the Germans were struggling to keep fighting at all in Europe, and didn't think it was realistic to produce more than research reactors given the time and resources they had available.

The liquid drop model dated back to 1935, so physicists, even non-specialists like Einstein, could readily understand the basic idea that fission was possible and that it should release neutrons, making a chain reaction possible. However, fission is a tunneling process, and tunneling depends exponentially on the width and height of the barrier, making it extremely difficult, even today, to calculate fission rates from first principles to even order-of-magnitude precision. People today would typically approach this kind of calculation using the Strutinsky smearing technique, which wasn't invented until 1968 (Strutinsky, Nucl. Phys. A122 (1968) 1; described in http://arxiv.org/abs/1004.0079 ). A primitive version of the nuclear shell model had been proposed, but it wasn't until Maria Goeppert-Mayer in the 50's that it was really developed into a detailed theory, and it only worked for spherical nuclei -- uranium and plutonium are deformed. Even gross features of the barrier, like the existence of a metastable minimum (fission isomers), were not to be discovered until the 60's. So induced fission cross-sections and average neutron multiplicities had to be measured empirically:
[W]hile Glenn Seaborg's team had proven in March 1941 that plutonium underwent neutron-induced fission, it was not known yet if plutonium released secondary neutrons during bombardment. Further, the exact sizes of the "cross sections" of various fissionable substances had yet to be determined in experiments using the various particle accelerators then being shipped to Los Alamos. (source)
The Germans also set themselves back because of Heisenberg's decision to use heavy water as a moderator, when graphite would have been easier. This was apparently partly based on a mistake in a 1940 measurement by Bothe.

There have been lots of hints (possibly involving wishful thinking and retroactive rewriting of history) by the German physicists that they may have dragged their feet or intentionally made mistakes, because they didn't want their own country to get the bomb. The true nature of Heisenberg’s role in the Nazi atomic bomb effort is a fascinating question, and dramatic enough to have inspired a well- received 1998 theatrical play, “Copenhagen.” The real story, however, may never be completely unraveled. Heisenberg was the scientific leader of the German bomb program up until its cancellation in 1942, when the German military decided that it was too ambitious a project to undertake in wartime, and too unlikely to produce results. Some historians believe that Heisenberg intentionally delayed and obstructed the project because he secretly did not want the Nazis to get the bomb. Heisenberg’s apologists point out that he never joined the Nazi party, and was not anti-Semitic. He actively resisted the government’s Deutsche-Physik policy of eliminating supposed Jewish influences from physics, and as a result was denounced by the S.S. as a traitor, escaping punishment only because Himmler personally declared him innocent. One strong piece of evidence is a secret message carried to the U.S. in 1941, by one of the last Jews to escape from Berlin, and eventually delivered to the chairman of the Uranium Committee, which was then studying the feasibility of a bomb. The message stated “...that a large number of German physicists are working intensively on the problem of the uranium bomb under the direction of Heisenberg, [and] that Heisenberg himself tries to delay the work as much as possible, fearing the catastrophic results of success. But he cannot help fulfilling the orders given to him, and if the problem can be solved, it will be solved probably in the near future. So he gave the advice to us to hurry up if U.S.A. will not come too late.” The message supports the view that Heisenberg intentionally misled his government about the bomb’s technical feasibility; German Minister of Armaments Albert Speer wrote that he was convinced to drop the project after a 1942 meeting with Heisenberg because “the physicists themselves didn’t want to put too much into it.” Heisenberg also may have warned Danish physicist Niels Bohr personally in September 1941 about the existence of the Nazi bomb effort.

On the other side of the debate, critics of Heisenberg say that he clearly wanted Germany to win the war, that he visited German-occupied territories in a semi-official role, and that he simply may not have been very good at his job directing the bomb project. On a visit to the occupied Netherlands in 1943, he told a colleague, “Democracy cannot develop sufficient energy to rule Europe. There are, therefore, only two alternatives: Germany and Russia. And then a Europe under German leadership would be the lesser evil.” Cassidy 2000 argues that the real point of Heisenberg’s meeting with Bohr was to try to convince the U.S. not to try to build a bomb, so that Germany, possessing a nuclear monopoly, would defeat the Soviets — this was after the June 1941 entry of the U.S.S.R. into the war, but before the December 1941 Pearl Harbor attack brought the U.S. in. Bohr apparently considered Heisenberg’s account of the meeting, published after the war was over, to be inaccurate. The secret 1941 message also has a curious moral passivity to it, as if Heisenberg was saying “I hope you stop me before I do something bad,” but we should also consider the great risk Heisenberg would have been running if he actually originated the message.

David C. Cassidy, "A Historical Perspective on Copenhagen," Physics Today, July 2000, p. 28, http://www.aip.org/pt/vol-53/iss-7/p28.html